
Modbus.org
MB-TCP-Security-v21_2018-07-24

 1

MODBUS/TCP Security

Protocol Specification

MODBUS® is a registered trademark of Schneider Electric USA, Inc., used under license by
Modbus Organization, Inc.

Modbus.org
MB-TCP-Security-v21_2018-07-24

 2

Table of Contents 1
 2

1 Conformance Levels ... 3 3
2 Normative Statements .. 3 4
3 References ... 4 5
4 Glossary of Acronyms & Abbreviations .. 5 6
5 Introduction ... 6 7
6 Protocol Overview .. 7 8

6.1 Transport Layer Security Introduction .. 7 9
7 Service Definition .. 11 10
8 Protocol Specification ... 11 11

8.1 TLS Handshake ... 11 12
8.2 Cipher suite selection... 15 13
8.3 mbaps Role-Based Client Authorization .. 15 14

9 System Dependencies .. 18 15
10 TLS Requirements ... 18 16

10.1 TLS Version ... 19 17
10.2 TLS v1.2 Cryptography .. 19 18

10.2.1 TLS Key Exchange .. 19 19
10.2.2 TLS Authentication ... 19 20
10.2.3 TLS Encryption .. 20 21
10.2.4 TLS MAC.. 20 22
10.2.5 TLS PRF .. 20 23
10.2.6 TLS Cryptography Import/Export Policy .. 20 24

10.3 TLS Fragmentation .. 21 25
10.4 TLS Compression .. 21 26
10.5 TLS Session Renegotiation ... 21 27

11 APPENDIX A: mbaps Packet Structure ... 22 28
12 APPENDIX B: Requirements listing ... 24 29
 30

List of Figures 31
 32
Figure 1 Modbus/TCP ADU ... 6 33
Figure 2 TLS Communications Protocol Stack .. 7 34
Figure 3 mbap PDU Encapsulated in TLS ... 8 35
Figure 4 Modbus/TCP Security Concept View .. 9 36
Figure 5 Example x.509v3 Certificate with Role Extension (2161 chars) 10 37
Figure 6 TLS Full Handshake Protocol .. 12 38
Figure 7. TLS Resumption ... 14 39
Figure 8 Role-Base Client AuthZ ... 16 40
Figure 9 Example Role Extension ... 16 41
Figure 10 mbaps Role-Based Client AuthZ ... 17 42
Figure 11 TLS Transportation of mbap PDU ... 22 43
Figure 12 TLS Record Layer Structure .. 22 44
Figure 13 TLS Generic Block Cipher ... 22 45
 46

List of Tables 47
 48
Table 1 Conformance Levels ... 3 49
Table 2 References.. 4 50
Table 3 Glossary of Acronyms & Abbreviations .. 5 51
Table 4 Context Specific Terminology ... 6 52
Table 5 TLS Full Handshake Protocol ... 12 53
Table 6. TLS Resumption handshake ... 14 54
Table 7. Requirements List .. 24 55
 56

Modbus.org
MB-TCP-Security-v21_2018-07-24

 3

1 Conformance Levels 57
 58
 59

Table 1 Conformance Levels 60

Latest
conventions
available
up-to-now

In a standard document, specific notations shall be used to define the
significance of each particular requirement. These notations (words) are
highlighted by capitalization.
As Consistency Rules may have the target to be presented to a
standards body in order to become an international standard, the
selection of the words "SHALL" and "MUST" should be made according
to the rules of the organization that covers the standardization in the
affected area of the Specification.

Compliance An implementation that satisfies all the MUST / SHALL requirements is
said to be “unconditionally compliant”.
One that satisfies all the MUST requirements but not all the SHOULD
recommendations is said to be “conditionally compliant”.
An implementation is not compliant if it fails to satisfy one or more of the
MUST / SHALL requirements that it implements

MUST
SHALL
REQUIRED

All requirements containing the word "MUST / SHALL" are mandatory.

The word "MUST / SHALL", or the adjective "REQUIRED", means that
the item is an absolute requirement of the implementation.

MUST NOT
SHALL NOT

All requirements containing the word "MUST NOT/ SHALL NOT" are
mandatory.

The phrase "MUST NOT” or the phrase “SHALL NOT” mean that the
item is an absolute prohibition of the specification.

SHOULD
RECOMMENDED

All recommendations containing the word "SHOULD", or the adjective
“RECOMMENDED” are considered desired behaviour.

These recommendations should be used as a guideline when choosing
between different options to implement functionality. In uncommon
circumstances, valid reasons may exist to ignore this item, but the full
implication should be understood and the case carefully weighed before
choosing a different course.

MAY
OPTIONAL

The word “MAY”, or the adjective "OPTIONAL", means that this item is
truly optional.

One implementer may choose to include the item because a particular
marketplace requires it or because it enhances the product; another
implementer may omit the same item.

 61
 62
 63
2 Normative Statements 64
 65
Normative statements in this technical specification are called out explicitly as follows: 66
 67

 68
 69
where "n.m" is replaced by the requirement statement tag number which can be a hierarchical 70
number, e.g. R-1.2.3 or a simple integer, e.g. R-1. 71
 72

R-n.m: Normative statement text goes here.

Modbus.org
MB-TCP-Security-v21_2018-07-24

 4

Each statement contains exactly one requirement level keyword (e.g., "MUST") and one 73
conformance target keyword (e.g., "Message"). Example: “The Message MUST be encoded 74
using BER”. 75
 76
The scope of the tag, R-n.m, is limited to this technical specification. 77
 78
The tag policy is as follows: 79

• A tag value is defined when the specification is released to the public. 80
• Once defined, the requirement statement associated to a tag MUST NOT change as 81

there is no versioning provided. 82
• If a change to a requirement statement is needed, then 83

o The requirement statement requiring change MUST be rendered obsolete and 84
moved to an obsolete tag appendix at the end of the document. 85

o The new requirement statement, with a new tag number, will replace the obsolete 86
requirement statement in the specification. 87

 88
3 References 89

Table 2 References 90

Reference Description
[62443-3-3] IEC 62443-3-3: System security requirements and security levels
[62443-4-2] IEC 62443-4-2: Technical security requirements for IACS components
[802.1AR-
2009] IEEE 802.1AR-2009 Secure Device Identity, 2009-12-22

[EST] IETF RFC 7030, Enrollment over Secure Transport, Oct 2013
[ISASEC] ISASecure EDSA-311 Functional Security Assessment (FSA)
[MB] Modbus Application Protocol Specification, V1.1b3, 2012-04-26,

http://modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf
[MBTCP] Modbus Messaging on TCP/IP Implementation Guide, V1.0b, 2006-10-24,

http://modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf
[PKCS#10] IETF RFC 2986, PKCS#10: Certificate Request Syntax Specification, v1.7, Nov

2000
[RFC2315] IETF RFC 2315, PKCS #7: Cryptographic Message Syntax, v1.5, Mar 1998
[RFC2986] IETF RFC 2986, PKCS#10: Certificate Request Syntax Specification, v1.7, Nov

2000
[RFC3447] IETF RFC 3447, Public-Key Cryptography Standards (PKCS) #1: RSA

Cryptography Specifications Version 2.1, Feb 2003
[RFC4492] IETF RFC 4492, Elliptic Curve Cryptography (ECC) Cipher Suites for Transport

Layer Security (TLS)
[RFC5246] IETF RFC 5246, The Transport Layer Security (TLS) Protocol, v1.2, Aug 2008
[RFC5272] IETF RFC 5272, Certificate Management over CMS (CMC), Jun 2008
[RFC5280] IETF RFC 5280, Internet x.509 Public Key Infrastructure Certificate and

Certificate Revocation List (CRL) Profile, May 2008
[RFC5746] IETF RFC 5746, TLS Renegotiation Indication Extension, Feb 2010
[RFC6066] IETF RFC 6066, TLS Extensions: Extension Definitions, Jan 2011
[RFC6176] IETF RFC 6176, Prohibiting Secure Sockets Layer (SSL) Version 2.0, Mar

2011
[RFC6347] IETF RFC 6347, Datagram Transport Layer Security Version 1.2, Jan 2012
[RFC6960] IETF RFC 6960, x.509 Internet PKI Online Certificate Status Protocol - OCSP,

Jun 2013
[SCEP] IETF draft SCEP v23, Simple Certificate Enrollment Protocol, draft-nourse-

scep-23
[SYSTEM-
PKI]

System PKI Dependencies companion document

[TLS-
PARAMS]

IANA’s Transport Layer parameter type registry.
http://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml

http://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml

Modbus.org
MB-TCP-Security-v21_2018-07-24

 5

 91
 92
 93
 94
4 Glossary of Acronyms & Abbreviations 95
 96
 97

Table 3 Glossary of Acronyms & Abbreviations 98

Reference Description
ADU Application Data Unit
AuthN Authentication
AuthZ Authorization
CA Certificate Authority
CDP CRL Distribution Point
CRL Certificate Revocation List
DTLS Datagram Transport Layer Security
EST Enrollment over Secure Transport
HMAC Keyed-hash Message Authentication Code
IANA Internet Assigned Numbers Authority
ICS Industrial Control System
IEC International Electrotechnical Commission
ISA International Society of Automation
MAC Message Authentication Code
mbap Modbus Application Protocol
mbaps Modbus Security Application Protocol
OID Object Idenitifier standardized by the International Telecommunications Union
OCSP Online Certificate Status Protocol
PDU Protocol Data Unit
PKI Public Key Infrastructure
PRF Psuedorandom Function Family
RA Registration Authority
SCEP Simple Certificate Enrollment Protocol
SSL Secure Socket Layer
TCP Transport Control Protocol
TLS Transport Layer Security

 99
 100

Modbus.org
MB-TCP-Security-v21_2018-07-24

 6

5 Introduction 101
 102
The Modbus/TCP protocol is widely deployed in Industrial Control Systems (ICS). The 103
specifications for Modbus/TCP are found at the modbus.org web site. The Modbus/TCP 104
specification defines an Application Data Unit (ADU). This ADU is defined as shown: 105
 106

 107
Figure 1 Modbus/TCP ADU 108

The difference between a traditional Modbus Protocol Data Unit (PDU) and the Modbus/TCP 109
ADU is the addition of the Modbus Application Protocol (mbap) header at the front of the 110
frame. 111
 112

In 1996 the Modbus/TCP protocol, was registered with IANA 113
(Internet Assigned Number Authority) and assigned the 114
system port number 502. In the course of this registration 115
process with IANA the Modbus/TCP protocol came to be 116
called the mbap protocol because of the mbap header in the 117
Modbus/TCP ADU. This name, the mbap protocol, persisted 118
and is still used for the port 502 registration with the IANA as 119
mbap/TCP 120
 121
The Modbus/TCP Security protocol is a security focused 122
variant of the Mobdbus/TCP protocol utilizing Transport 123
Layer Security (TLS). IANA has assigned the Modbus/TCP 124
Security protocol the system port number 802. Modbus.org 125
has registered the name Modbus Security Application 126
Protocol to the protocol registered at port 802 with IANA as 127
mbap/TLS/TCP 128

 129
The selection of TLS as the secure transport protocols is the result of analyzing representative 130
data flows from industry domains in the context of [62443-3-3], [62443-4-2], and [ISASEC] 131
Functional Security requirements. 132
 133
Table 4 Context Specific Terminology lists the names used for the mbap communication 134
profiles in different contexts, e.g. Communication Profile, Modbus.org, the IANA Registry, and 135
this specification. For reasons of brevity, the remainder of this specification will use mbap and 136
mbaps to refer to Modbus/TCP and Modbus/TCP Security respectively. 137
 138

Table 4 Context Specific Terminology 139

Communication
Profile

Modbus.org IANA Registry This specification
(for brevity)

mbap/TCP Modbus/TCP Modbus Application
Protocol at System
Port 502

Mbap

mbap/TLS/TCP Modbus/TCP Security Modbus Security
Application Protocol at
System Port 802

Mbaps

 140

Modbus/TCP
Security Principles

• Modbus/TCP Security @

port 802
• x.509v3 certificate based

identity and authentication
with TLS

• Mutual client/server TLS
authentication

• Authorization using roles
transferred via certificates

• Authorization rules are
product specific

• No changes to mbap

Modbus.org
MB-TCP-Security-v21_2018-07-24

 7

6 Protocol Overview 141
 142
In the tradition of Modbus, the mbaps requirements are kept simple allowing vendors to 143
develop additional infrastructure around the protocol and allowing backwards compatibility with 144
legacy devices and fieldbuses. Mbaps extends the original mbap protocol as defined in 145
[MBTCP] and [MB]. Mbaps defines a client-server protocol that is a part of a complete security 146
system architecture. As illustrated in Figure 3 mbap PDU Encapsulated in TLS, the mbap PDU is 147
encapsulated by TLS. TLS provides a security focused protocol alternative to mbap by adding 148
confidential transport of the data, data integrity, anti-replay protection, endpoint authentication 149
via certificates, and authorization via information embedded in the certificate such as user and 150
device roles. 151
 152
The protocols mbap and mbaps are similar to http and its secure variant https respectively. In 153
mbaps, the mbap protocol is transported via TLS. TLS provides an authentication capability 154
via x.509v3 certificates. The mbaps clients and servers must be provisioned with the these 155
certificates to participate in the TLS Authentication function. 156
 157
An important difference between mbap and mbaps is that mbaps provides the capability of the 158
server invoking an authorization function whose rules are driven by the vendor or customer, 159
utilizing role data that is provided via an extension field in the x.509v3 certificate. The 160
extension is registered with Modbus.org’s IANA OID. TLS provides for the use of pre-shared 161
keys to establish a secure connection, but the use is not considered for this specification as it 162
does not allow for the trasfer of role information to provide an authorization function. 163
 164
6.1 Transport Layer Security Introduction 165
The mbaps/TLS/TCP profile uses the secure TLS transport protocol defined in IETF RFC 166
5246. [RFC5246] defines TLS v1.2 which is the most current TLS version at the publishing of 167
this document and provides countermeasures and mitigations for known vulnerabilities in 168
earlier versions. Should newer TLS versions be available, it is recommended to allow their use 169
in the client /server mbaps device. 170
 171
TLS is composed of a set of protocols as illustrated in Figure 2 TLS Communications Protocol 172
Stack. The main protocol in the set is the TLS Record Protocol. The remaining protocols are 173
sub-protocols which are carried by the TLS Record Protocol. These are managed by a TLS 174
middleware. 175

 176
Figure 2 TLS Communications Protocol Stack 177

 178
The mbap PDU which is unchanged in the mbaps profile is encapsulated in a TLS Application 179
Protocol message as illustrated in Figure 3 mbap PDU Encapsulated in TLS. 180
 181

Modbus.org
MB-TCP-Security-v21_2018-07-24

 8

 182
Figure 3 mbap PDU Encapsulated in TLS 183

The TLS Handshake Protocol shown in Figure 4 184
Modbus/TCP Security Concept View: 185
• Negotiates cryptography for secure channel including 186
algorithms, keys, etc. between end points. 187
• Provides mutual client/server authentication based on 188
x.509v3 certificates 189
• Extracts the client role OID from the certificate 190
• Establishes the TLS session. 191
 192
After the TLS session is established normal modbus request 193
and response sequences are transmitted in the secured TLS 194
Application Protocol channel. During the procesing of the 195
request, the mbaps protocol handler invokes a vendor 196
specific authorization function. This authorization function 197
evaluates a roles-to-rights algorithm using inputs from the 198
mbap PDU and the role extracted from the x.509 client 199
certificate of the connection. The algorithm determines if the 200
PDU can be processed based on role of the peer. If the 201
authorization function determines that the mbap PDU code 202
cannot be processed, the mbap handler returns a 01 – Ilegal 203
Function modbus exception code. This authorization process 204
occurs on every request, ensuring complete validation of the 205
request stream. 206
 207

Modbus/TCP
Security

• Mutual client/server

TLS Authentication.
• Certificate based

Identity and
Authentication with
TLS.

• Certificate based
Authorization using role
information transferred
via certificate
extensions.

• Authorization is product
specific and invoked by
mbap function code
handler.

• Authorization roles to
rights rules are product
specific and configured
in the Authorization
function.

Modbus.org
MB-TCP-Security-v21_2018-07-24

 9

 208

 209
Figure 4 Modbus/TCP Security Concept View

Modbus.org
MB-TCP-Security-v21_2018-07-24

 10

 210

 211
 212

Certificate:
Data:
 Version: 3 (0x2)
 Serial Number: 4135 (0x1027)
Signature Algorithm: sha256WithRSAEncryption
 Issuer: C=US, ST=STATE, L=LOCAL, O=ORG, OU=SUBORG, CN=INTER-CA
 Validity
 Not Before: Oct 27 12:58:27 2017 GMT
 Not After : Oct 27 12:58:27 2018 GMT
 Subject: C=US, ST=STATE, L=LOCAL, O=ORG, OU=SUBORG, CN=ModbusSecurityClient
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 Public-Key: (2048 bit)
 Modulus:
 00:be:3d:4d:9e:8c:fe:1e:06:e6:19:cd:52:68:07:
 54:c6:d3:b3:cd:bb:da:dd:29:29:b5:2d:2f:3b:bf:
 b9:3c:c7:c2:f4:a9:98:ce:6e:47:f5:64:7d:6d:e8:
 a3:6b:02:da:4c:e9:05:b8:aa:30:d9:95:13:1f:14:
 58:3e:c1:dc:a7:21:ca:c0:90:c9:e5:80:70:2b:8d:
 4d:0a:78:96:c0:9e:1f:f1:1d:e7:e8:24:be:06:a1:
 b8:6a:67:d3:7f:1c:d4:cb:c3:85:5a:f8:a7:ef:d1:
 e0:df:30:60:44:29:a3:4d:63:24:d2:7f:e9:45:29:
 2d:e9:fa:53:3d:be:f8:cd:72:64:08:dc:7e:b0:e9:
 d1:c2:e7:52:de:eb:9d:b0:60:b1:73:62:24:ac:ba:
 08:5f:65:23:9a:38:b5:48:53:08:bc:79:ae:b1:55:
 fd:b1:f3:6f:c9:fa:ac:aa:89:aa:f9:59:ca:bf:fe:
 7a:12:cf:88:20:5b:5e:8b:b5:b1:58:04:41:19:2c:
 26:91:0d:ce:86:38:93:32:a0:ab:57:01:38:5a:41:
 36:77:ae:2b:89:28:8e:22:48:84:b6:18:b9:31:aa:
 52:c3:72:3a:19:41:65:21:87:32:4b:c0:53:3e:aa:
 36:dd:d6:40:09:55:e3:65:2c:f9:d4:61:24:6d:60:
 64:87
 Exponent: 65537 (0x10001)
 X509v3 extensions:
 X509v3 Basic Constraints:
 CA:FALSE
 X509v3 Subject Key Identifier:
 B3:09:92:E3:60:44:DE:F5:5B:30:8B:3B:D3:EA:78:FF:CE:DA:E3:48
 X509v3 Key Usage: critical
 Digital Signature, Non Repudiation, Key Encipherment
 RoleOID:1.3.6.1.4.1.50316.802.1:
 Operator
 X509v3 Subject Alternative Name:
 IP Address:192.168.2.12, IP Address:192.168.2.22
Signature Algorithm: sha256WithRSAEncryption
 4f:a2:ca:1f:ea:11:b8:55:89:97:6a:b8:f2:bc:a6:30:e4:6a:
 d7:1e:25:8e:db:cb:f1:54:23:9a:ce:39:e4:dd:96:5f:ce:2a:
 0c:73:43:23:06:7d:a4:fa:33:48:2c:86:42:a7:eb:d8:d4:fa:
 d1:08:07:e9:b1:9c:51:b6:78:9c:e7:2e:fb:22:cc:89:28:ef:
 8f:7a:30:a9:73:e8:28:9a:ab:a4:f2:d5:ec:29:e8:dc:77:a7:
 f5:e1:71:8a:0f:76:4c:78:a5:5c:b7:ea:4e:86:c7:fe:01:17:
 8c:4a:b1:7c:11:d7:f7:a6:81:d4:1c:bb:86:af:d5:20:fe:05:
 ec:0f:de:8d:d1:c0:76:40:31:0f:15:23:65:4d:5c:7c:52:d3:
 cd:c7:81:a5:8a:4f:51:e1:2b:07:9a:8b:83:0d:95:91:97:37:
 6d:59:c5:ca:2e:5d:82:a8:ac:1c:f8:0a:56:06:dc:47:93:db:
 bc:c6:21:94:dd:55:ee:90:3f:ad:f8:15:22:16:99:cf:3f:bc:
 2f:af:aa:04:16:0d:e6:89:c2:f4:af:cb:0e:27:fc:5c:d9:3f:
 5c:5a:b7:4b:aa:d9:a5:eb:0a:3e:53:16:1a:3f:10:20:7b:52:
 ea:93:ed:b8:21:43:b3:dd:cb:38:1f:d9:38:d1:10:09:c0:25:
 df:bf:6a:b7

Figure 5 Example x.509v3 Certificate with Role Extension (2161 chars)

Example x.509v3
Certificate with Role
Encoded as a
Certificate
Extension

• Example Role is Operator
• The OID for the Role is defined in

the Modbus.org Transparent
Factory Private MIB whose PEN
(Private Enterprise Number) is
50316.

Modbus.org
MB-TCP-Security-v21_2018-07-24

 11

 The development of mbaps and its deployment in a device were guided by a set of principles 213
including: 214

• R-01: The TLS Protocol v1.2 as defined in [RFC5246] or newer MUST be used as the 215
secure transport protocol for an mbaps Device. 216

• R-02: Secure communications to an mbaps Device MUST use Mutual client/server 217
authentication as provided by the TLS Handshake Protocol. 218

• R-03: x.509v3 Certificates as defined in [RFC5280] MUST be used as mbaps device 219
credentials for Identity/Authentication by the TLS protocol. 220

• R-04: If the Authorization function is enforced it MUST use the role transferred via 221
x.509v3 certificate extensions. 222

• R-05: There MUST be no change to the mbap protocol as a consequence of it being 223
encapsulated by the secure transport. 224
 225

 226
7 Service Definition 227
 228
Standard function codes used on Modbus Application layer protocol are described in details in the 229
[MB] specification. There is no modification to the standard function codes in this specification. 230
 231
8 Protocol Specification 232
 233
The communication of an mbap PDU is secured using the Transport Layer Security protocol, 234
TLS, defined in [RFC5246]. Figure 3 mbap PDU Encapsulated in TLS illustrates how an mbap 235
PDU is transmitted via the TLS Application Protocol. 236
 237
TLS provides Transport Layer Security between two end points. To do this, the TLS end points 238
execute the TLS Handshake protocol to negotiate security parameters and to create a TLS 239
session. 240
 241
8.1 TLS Handshake 242
 243
For two mbaps end devices to communicate securely using TLS, a security context between the 244
end points of the TLS connection must be established. The TLS Handshake protocol establishes 245
the secure context, i.e. the TLS session. The TLS session has a session identifier and the 246
security context is described by a set of security parameters as defined in [RFC5246] section A.6. 247
 248
Mutual Authentication requires that each end point will send its domain certificate chain to the 249
remote end point. Upon receipt of a certificate chain from the remote peer, the TLS end point will 250
verify the each certificate signature using the next CA certificate in the chain until it can verify the 251
root of the chain. 252
 253
The TLS Full Handshake Protocol, which is defined in [RFC5246] section 7.3, is illustrated in 254
Figure 6 TLS Full Handshake Protocol. 255
 256

Modbus.org
MB-TCP-Security-v21_2018-07-24

 12

 257

 258
Table 5 TLS Full Handshake Protocol 259

Message Description
1:ClientHello The TlsClient sends a ClientHello message to the TlsServer to

begin negotiation process. The TlsClient offers a cipher suite list in
the message. The cipher suite list is ordered by the the client’s
preference.

2:ServerHello TlsServer sends a ServerHello message in response to
ClientHello. The message identifies an acceptable set of
cryptographic algorithms and returns a new sessionID.

3:ServerCertificate The TlsServer sends its certificate chain as the payload of a
Certificate message. This chain contains the server device’s
domain certificate, as well as the certificate for each issuing CA
down to the root CA. This server’s domain certificate also contains
the role of the server. This is not used by the client.

4:VerifyServerCertSig When peer received certificate of remote peer it will check it by
• verifying each certificate’s signature in the chain using

public key of the issuer CA
• validate the certificate path to a trusted root certificate
• check the revocation status of each certificate in the chain

Figure 6 TLS Full Handshake Protocol

Modbus.org
MB-TCP-Security-v21_2018-07-24

 13

 260
TLS [RFC5246] also provides for session resumption. The server side partner caches the last 261
security state known, and pairs it the session ID used in the client and server hello. If the client 262
caches the security context and sessionId it can present this sessionID to the server on the next 263
ClientHello. If this sessionID matches with a cached sessionID on the server, the server will 264
immediately change the cipher spec as shown in Figure 7. TLS Resumption and the connection 265
will resume. This reduces the TLS negotiation time to 1 application round trip time, and removes 266
the public/private key cryptographic function needed to authorize a new peer. This resumption will 267
require the server to cache the role associated with the connection’s client certificate and 268
associate it with the sessionID. 269
 270
If the sessionID presented by the clientHello does not match a known server session, a new 271
sessionID is returned in the serverHello message and a full TLS handshake is performed as in 272
Figure 6 TLS Full Handshake Protocol. 273
 274

5:ServerKeyExchange The TlsServer sends a ServerKeyExchange message to the
TlsClient to provide data for setting the pre-master key.

6:CertificateRequest The TlsServer sends a Certificate Request message to the
TlsClient to obtain the Client Certificate.

7:ServerHelloDone The TlsServer sends a ServerHelloDone message to the TlsClient
to indicate the end of the ServerHello and associated messages.

8:ClientCertificate The TlsClient sends its certificate chain as the payload of a
Certificate message. This chain contains the client device’s
domain certificate, as well as the certificate for each issuing CA
down to the root CA. This client’s end certificate also contains the
role of the client. This is used by the server to authorize a later
application level request.

9:VerifyClientCertSig When peer received certificate of remote peer it will check it by
• verifying each certificate’s signature in the chain using

public key of the issuer CA
• validate the certificate path to a trusted root certificate
• check the revocation status of each certificate in the chain

10:ClientKeyExchange The TlsClient sends a ClientKeyExchange message to the
TlsServer. With this message the pre-master secret is set.

11:ChangeCipherSpec The TlsClient sends a ChangeCipherSpec message to the
TlsServer to indicate that subsequent messages sent by the Client
will be sent using newly negotiated cipher spec and keys.

12:Finished The TlsClient sends a Finished message to the TlsServer. This
message is the first message protected with the just negotiated
algorithms, keys, and secrets.

13:ChangeCipherSpec The TlsServer sends a ChangeCipherSpec message to the
TlsClient to indicate that subsequent messages sent by the Server
will be sent using newly negotiated cipher spec and keys.

14:Finished The TlsServer sends a Finished message to the TlsClient. This
message is protected with the just negotiated algorithms, keys,
and secrets.

15+n:ApplData() n ::= { 1 .. m}
15+n+1:ApplData() n ::= { 1 .. m}

Modbus.org
MB-TCP-Security-v21_2018-07-24

 14

 275
Figure 7. TLS Resumption 276

Table 6. TLS Resumption handshake 277

Message Description
1:ClientHello The TlsClient sends a ClientHello message to the TlsServer to

begin negotiation process. The TlsClient offers a cipher suite list in
the message. It also offers a cached non-zero sessionID

2:ServerHello TlsServer sends a ServerHello message in response to
ClientHello. The message identifies an acceptable cipher suite,
returns the same sessionID, and includes a ChangeCipherSpec
record

2:ChangeCipherSpec The TlsServer sends a ChangeCipherSpec message to the
TlsClient to indicate that subsequent messages sent by the Server
will be sent using newly negotiated cipher spec and keys.

2:Finished The TlsServer sends a Finished message to the TlsClient. This
message is the first message protected with the just negotiated
algorithms, keys, and secrets.

3:ChangeCipherSpec The TlsClient sends a ChangeCipherSpec message to the
TlsServer to indicate that subsequent messages sent by the Client
will be sent using newly negotiated cipher spec and keys.

Modbus.org
MB-TCP-Security-v21_2018-07-24

 15

 278
R-06: mbaps end devices MUST provide mutual authentication when executing the TLS 279
Handshake Protocol to create the TLS session. 280
R-07 The TlsServer MUST send the CertificateRequest extension as part of its ServerHello 281
message. 282
R-08 The TlsClient MUST send a ClientCertificate message upon receiving a request containing 283
the Client Certificate Request. 284
R-09 If the TlsServer does not send a CertificateRequest message, then the TlsClient MUST 285
send a ‘fatal alert’ message to the TlsServer and terminate the connection. 286
R-10 If the TlsClient does not send a ClientCertificate message, then the TlsServer MUST send a 287
‘fatal alert’ message to TlsClient and terminate the connection. 288
R-11 Per RFC5246-7.2.2, the TLS connection MUST NOT be resumed after a ‘fatal alert’. 289
 290
8.2 Cipher suite selection 291
 292
The security strength of the resulting TLS session is dependent on the cipher suite negotiated 293
between the TLS end points. Cipher suites designate what cryptography will be used by the TLS 294
session to provide a certain level of security. 295
 296
For example, the cipher suite, TLS_RSA_WITH_AES_128_CBC_SHA256, has an identifier of 297
{0x00, 0x3C} at the IANA Registry. Only cipher suites registered with IANA and not known to 298
have current weaknesses should be used in mbaps. 299
 300
This example cipher suite indicates that: 301

• RSA will be used for key exchange, 302
• AES 128 CBC will be used for encryption, and 303
• SHA256 will be used for message integrity. 304

 305
R-12: Cipher suites used with TLS for mbaps MUST be listed at the IANA Registry found @ 306
http://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml . 307
 308
R-13: The cipher allowed for TLS with mbaps MUST accommodate the use of x.509v3 309
certificates. 310
 311
R-14: mbaps Devices MUST provide at minimum the following TLS v1.2 cipher suites: 312

• TLS_RSA_WITH_AES_128_CBC_SHA256, {0x00, 0x3C} 313
• TLS_RSA_WITH_NULL_SHA256, {0x00, 0x3B} 314

 315
R-15: The default cipher suite for both mbaps client and server Devices SHOULD be 316
TLS_RSA_WITH_AES_128_CBC_SHA256, {0x00, 0x3C} 317
 318
R-66: Client devices with bulk transport encryption and NULL bulk encryption SHOULD always 319
place NULL bulk transport cipher suites last in cipher suite priority 320
 321
 322
8.3 mbaps Role-Based Client Authorization 323
 324

3:Finished The TlsClient sends a Finished message to the TlsServer. This
message is protected with the just negotiated algorithms, keys,
and secrets.

4[1..n]:ApplData() n ::= { 1 .. m}
5[1..n]:ApplData() n ::= { 1 .. m}

http://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml

Modbus.org
MB-TCP-Security-v21_2018-07-24

 16

The mbaps protocol provides the capability to perform role-325
based client authorization (AuthZ). The client role data is 326
transported in an extension of its x.509v3 domain certificate. 327
An example of a certificate with a Role extension is shown in 328
Figure 5 Example x.509v3 Certificate with Role Extension 329
(2161 chars). 330
 331
 332
 333
Role-Based Client Authorization for mbaps is illustrated in 334
Figure 8 Role-Base Client AuthZ. 335
 336
 337

 338

 339
Once a TLS Session is established between the two TLS end points, the execution of role-based 340
client AuthZ is a two-step process. 341
 342
During the first step, the mbaps server obtains the x.509v3 client domain certificate. This step 343
occurs when the mbaps server receives message 8 as shown in Figure 6 TLS Full Handshake 344
Protocol. The role is extracted from the x.509v3 certificate and cached. If a session is resumed, 345
this role must be associated with the resumed session. 346
 347

 348
 349
 350
 351
In the example Role extension, shown in Figure 9 Example Role Extension, the Role value is 352
‘Operator’. 353
 354
The second step of the mbaps role-based client AuthZ capability involves using the extracted 355
client Role and the Modbus request. Both fields are input to the mbaps AuthZ Algorithm. The 356
AuthZ Algorithm determines whether the client is AUTHORIZED or NOT_AUTHORIZED to 357
perform the indicated function on the indicated resource that was specified in the Modbus 358
Function Code received by the mbaps server using the provisioned Roles-to-Rights Rules 359
Database. If the request is NOT_AUTHORIZED, Modbus exception code 01 – Illegal function 360
code will be returned. If the request is AUTHORIZED, it will be processed as normal by the mbap 361
server. 362
 363

...
Role:
 1.3.6.1.4.1.50316.802.1: Operator

Figure 8 Role-Base Client AuthZ

mbapsClient

mbapsServer

mbaps server protocol handler

AuthZ Algorithm

Roles-to-Rights Rules Database

mbaps client protocol handler

x.509v3 Client Domain Certificate

Figure 9 Example Role Extension

Role-based
Authorization

• Roles are encoded in

x.509v3 Certificate
Extension.

• Authorization function is
vendor specific.

• Authorization roles to
rights rules are vendor
specific and configured
into the Authorization
function.

Modbus.org
MB-TCP-Security-v21_2018-07-24

 17

The Authorization Function and Roles-to-Rights Rules Database may exist on the server device 364
or may be remote requiring a separate protocol to determine the authorization status of the 365
request. This is outside the scope of this document. 366
 367
The two-step process is shown in Figure 10 mbaps Role-Based Client AuthZ. 368
 369

 370
Figure 10 mbaps Role-Based Client AuthZ 371

R-16: A mbaps Server Device SHOULD provide the role-based client AuthZ as described in this 372
section. 373
 374
R-17: If a mbaps Server Device provides role-based client AuthZ, it MUST comply with the 375
requirements identified in this section. 376
 377
R-18: To provide mbaps role-based client authorization capability the following elements are 378
REQUIRED: 379

x.509v3 client domain certificate ‘Role’ extension, 380
mbaps server AuthZ algorithm, 381

Modbus.org
MB-TCP-Security-v21_2018-07-24

 18

mbaps server Roles-to-Rights Rules Database. 382
 383

R-19: The mbaps client device MUST be provisioned with its x.509v3 domain certificate. 384
 385

R-20: The x.509v3 client domain certificate MUST include the Role extension. 386
 387
R-21: The Role in the X.509v3 certificate MUST use the Modbus.org PEM OID 388
1.3.6.1.4.1.50316.802.1 389
 390
R-22: The Role in the x.509v3 certificate MUST use ASN1:UTF8String encoding 391
 392
R-65: There MUST only be one role defined per certificate. The entire string will be treated as one 393
role. 394
 395
R-23: If no Role is specified in the X.509v3 certificate, the mbaps server MUST provide a NULL 396
role to the AuthZ algorithm. 397

 398
R-24: The mbaps AuthZ Algorithm MUST be defined and provided by the device vendor. 399
 400
R-25: The Roles-to-Rights Rules Database design, both syntax and semantics, MUST be defined 401
by the device vendor. 402

 403
R-26: The Roles-to-Rights Rules Database for a particular application MUST be configured 404
according to the device vendor’s design, and provisioned in the mbaps Server by the end user. 405
 406
R-27: The Roles-to-Rights Rules Database for a particular application MUST be configurable by 407
the end user. 408
 409
R-28: The Roles-to-Rights Rules Database for a particular application MUST NOT have hardcoded 410
default roles that are unchangeable. 411
 412
R-29: The Role values used in the x.509v3 client domain certificates MUST be consistent with the 413
device vendor’s design of the Roles-to-Rights Rules Database. 414
 415
R-30: The mbaps server MUST extract the client Role from the received x.509v3 client domain 416
certificate. 417
 418
R-31: If the MBAP protocol handler for authorization rejects a request it MUST use the 419
exception code 01 – Illegal function code. 420
 421
9 System Dependencies 422
 423
To participate in a solution architecture, mbaps devices are dependent on the certificate 424
management services of a Public Key Infrastructure (PKI). The details are not materially 425
important to the implementation of the mbaps server or client behaviour. 426
 427
Although there are many variations for types and configurations of PKI systems, the [SYSTEM-428
PKI] companion documents discusses a typical local PKI system that is appropriate for use with 429
collaborations of mbaps devices. 430
 431
Furthermore the [SYSTEM-PKI] companion document includes recommendations that mbaps 432
devices may need to place on the local PKI system for their successful deployment and 433
operation. 434

10 TLS Requirements 435
 436

Modbus.org
MB-TCP-Security-v21_2018-07-24

 19

10.1 TLS Version 437
 438

R-32: mbaps devices MUST provide TLS v1.2 or better. 439
 440
R-33: mbaps Devices MUST conform to the requirements of [RFC5246]. 441
 442
R-34: mbaps devices MUST NOT negotiate down to TLS v1.1, TLS v1.0, or SSL V3.0. 443
 444
R-35: mbaps devices MUST NOT negotiate the use SSL v2.0 and SSL v1.0 in conformance with 445
[RFC6176]. 446
 447

10.2 TLS v1.2 Cryptography 448
 449
R-36: mbaps Devices SHOULD provide a counter mode cipher suite. 450
 451
Counter mode cipher suites include 452
 TLS_RSA_WITH_AES_128_GCM_SHA256, {0x00, 0x9C} 453
 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, {0xC0, 0x2B} 454
 455
R-37: mbaps Devices MUST NOT negotiate the cipher suite, TLS_NULL_WITH_NULL_NULL 456
 457
R-38: Any cipher suite used by mbaps Devices and negotiated in a TLS Handshake Protocol 458
exchange MUST be listed at IANA’s TLS Cipher Suite Registry in the [TLS-PARAMS]. 459
 460

10.2.1 TLS Key Exchange 461
 462
R-39: mbaps Devices MUST provide TLS Client-Server key exchange based-on RSA technology 463
as specified by the mandatory cipher suite and described in [RFC 5246]. 464
 465
R-40 mbaps Devices SHOULD provide TLS Client-Server key exchange based on ECC 466
technology. 467
 468
R-62 mbaps Devices using ECC technology MUST support at least P-256 NIST curve. 469
 470
R-63 mbaps Devices using ECC technology MUST support at least the minimum cipher suite of 471
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 472
 473
R-61 mbaps Devices using ECC technology MUST specify the curves used in their Client Hello 474
using the Supported Elliptic Curves extension in [RFC4492] 475
 476

10.2.2 TLS Authentication 477
Authentication against trust anchors may be done using self signed device certificates. It is 478
recommended to use certificates signed by a Certificate Authority for authentication. 479
 480
Session resumption using session tickets or resuming session IDs should be supported to reduce 481
the handshake time of a connection.Session resumption using session IDs is preferred. In 482
session resumption it is the responsibility of the server to cache and maintain session information 483
for later use. It is more well supported and places less demand on clients to manage session 484
information with their peer. 485
 486
Session tickets place the burden of session information on the client. This information is 487
encrypted by the server and transmitted to the client. On new session, this information is 488
transmitted back to the server and used to re-establish a connection. Less server resources are 489

Modbus.org
MB-TCP-Security-v21_2018-07-24

 20

needed to accomplish this but network resources are wasted and due to the transmission of 490
information it takes longer to re-establish a connection. 491
 492
R-41: mbaps Devices MUST support the TLS Client-Server Mutual Authentication Handshake. 493
 494
R-42: mbaps Device SHOULD support the TLS Resumed Session Handshake on Client and 495
Server. 496
 497
R-43: mbaps Device MAY support the TLS Session Ticket resumption on Client and Server 498
 499
R-44: mbaps Servers MUST reject a TLS Handshake where the Client has not responded to a 500
Client Certificate request with certificate. 501
 502
R-45: mbaps Devices SHOULD provide x.509v3 Certificates signed by a Certificate Authority. 503
 504
R-46: mbaps Devices MUST send the entire certificate chain down to the root CA when sending 505
their certificate 506
 507
R-47: x.509v3 Certificates provided by mbaps Devices MUST conform to the requirements of 508
[RFC5280]. 509
 510

10.2.3 TLS Encryption 511
 512
R-48: If an mbaps Device is to be used in a scenario where encryption is required, then a cipher 513
suite with the required encryption indicator MUST be chosen from the list at IANA’s TLS Cipher 514
Suite Registry in the [TLS-PARAMS]. 515

 516
R-49: If an mbaps Device is to be used in a scenario where encryption is not required, then a 517
cipher suite with a NULL bulk encryption indicator MUST be chosen from the list at IANA’s TLS 518
Cipher Suite Registry in the [TLS-PARAMS]. 519

10.2.4 TLS MAC 520
 521
R-50: mbaps Devices MUST NOT use the HMAC-MD5 hash algorithm. 522
 523
R-51: mbaps Devices MUST NOT use the HMAC-SHA-1 hash algorithm. 524
 525
R-52: mbaps Devices MUST provide the HMAC-SHA-256 hash algorithm. 526
 527
R-53: mbaps Device MUST NOT use a NULL HMAC hash algorithm 528
 529

10.2.5 TLS PRF 530
 531
R-54: mbaps Devices MUST NOT provide the HMAC-SHA-1 hash algorithm for use in the PRF 532
function to calculate the key block as defined in [RFC5246] sections 5, 6.3 and 8.1. 533
 534
R-55: mbaps Devices MUST provide the HMAC-SHA-256 hash algorithm for use in the PRF 535
function to calculate the key block as defined in [RFC5246] sections 5, 6.3 and 8.1. 536
 537

10.2.6 TLS Cryptography Import/Export Policy 538
 539
R-56: As early as possible in their development cycle, mbaps devices MUST determine that they 540
comply with the import/export conformance policies of their respective countries for the 541
cryptography they provide. 542

Modbus.org
MB-TCP-Security-v21_2018-07-24

 21

10.3 TLS Fragmentation 543
 544
R-57: mbaps devices MUST provide the Maximum Fragment Length Negotiation Extension as 545
defined in [RFC6066]. 546
 547
R-58: mbaps devices MUST provide the ability to negotiate a Maximum Fragment Length of 29 548
(512) bytes as defined in [RFC6066]. 549
 550

10.4 TLS Compression 551
 552

R-59: mbaps devices MUST set the TLS CompressionMethod field of the ClientHello message to 553
the value of NULL. 554

 555

10.5 TLS Session Renegotiation 556
 557
R-60: mbaps devices MUST provide the TLS Renegotiation Indication Extension defined in 558
[RFC5746] to provide the secure renegotiation of TLS sessions. 559
 560

Modbus.org
MB-TCP-Security-v21_2018-07-24

 22

11 APPENDIX A: mbaps Packet Structure 561
 562
Figure 11 TLS Transportation of mbap PDU shows the layering of the TLS protocol on TCP. The 563
mbap PDU encapsulated in a TLS Application Protocol Packet. The mbaps protocol which is the 564
mbap protocol transported by TLS is found at TCP port 802. 565

 566
The structure of the TLS Record Layer used by mbaps is defined in [RFC5246] sec A-1, where: 567

• ContentType type = 23, Application Protocol 568
• ProtocolVersion version = {3,3} for TLS v1.2 569
• uint16 length = number of bytes of the following TLSCiphertext.fragment, 570

 MUST NOT exceed 16384 + 2048 (18432) 571
• fragment = The encrypted form of TLSCompressed.Fragment, with the MAC 572

 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
For block ciphers such as AES, the fragment type is GenericBlockCipher. As defined in section 587
10.4 TLS Compression, the CompressionMethod is set to NULL. Consequently, 588
TLSCompressed.length is the same as the uncompressed fragment length. 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
The content element of the Generic Block Structure is the mbap PDU. 604

IP

TCP

Port 802

TLS Record Protocol

TLS Application Protocol

TLS Content Type = 23

MBAP PDU

Figure 11 TLS Transportation of mbap PDU

struct {
 ContentType type;
 ProtocolVersion version;
 uint16 length;
 select (SecurityParameters.cipher_type) {
 case stream: GenericStreamCipher;
 case block: GenericBlockCipher;
 case aead: GenericAEADCipher;
 } fragment;
 } TLSCiphertext;

Figure 12 TLS Record Layer Structure

struct {
opaque IV[SecurityParameters.record_iv_length];
block-ciphered struct {
opaque content[TLSCompressed.length];
opaque MAC[SecurityParameters.mac_length];
uint8
padding[GenericBlockCipher.padding_length];
uint8 padding_length;
};

} GenericBlockCipher;

Figure 13 TLS Generic Block Cipher

mbap PDU

Modbus.org
MB-TCP-Security-v21_2018-07-24

 23

 605

Modbus.org
MB-TCP-Security-v21_2018-07-24

 24

12 APPENDIX B: Requirements listing 606
 607
Table 7. Requirements List 608

Section Requirement
6.1 R-01: The TLS Protocol v1.2 as defined in [RFC5246] or newer MUST be used as

the secure transport protocol to an mbaps Device.

6.1 R-02: Secure communications to an mbaps Device MUST use Mutual client/server
authentication as provided by the TLS Handshake Protocol.

6.1 R-03: x.509v3 Certificates as defined in [RFC5280] MUST be used as mbaps
device credentials for Identity/Authentication by the TLS protocol.

6.1 R-04: If the Authorization function is enforced it MUST use the role transferred via

x.509v3 certificate extensions.

6.1 R-05: There MUST be no change to the mbap protocol as a consequence of it
being encapsulated by the secure transport

8.1 R-06: mbaps end devices MUST provide mutual authentication when executing the
TLS Handshake Protocol to create the TLS session.

8.1 R-07 The TlsServer MUST send the CertificateRequest extension as part of its
ServerHello message.

8.1 R-08 The TlsClient MUST send a ClientCertificate message upon receiving a
request containing the Client Certificate Request.

8.1 R-09 If the TlsServer does not send a CertificateRequest message, then the
TlsClient MUST send a ‘fatal alert’ message to the TlsServer and terminate the
connection.

8.1 R-10 If the TlsClient does not send a ClientCertificate message, then the TlsServer
MUST send a ‘fatal alert’ message to TlsClient and terminate the connection.

8.1 R-11 Per RFC5246-7.2.2, the TLS connection MUST NOT be resumed after a ‘fatal
alert’.

8.2 R-12: Cipher suites used with TLS for mbaps MUST be listed at the IANA Registry
found @ http://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml .

8.2 R-13: The cipher allowed for TLS with mbaps MUST accommodate the use of
x.509v3 certificates.

8.2 R-14: mbaps Devices MUST provide at minimum the following TLS v1.2 cipher
suites:

• TLS_RSA_WITH_AES_128_CBC_SHA256, {0x00, 0x3C}
• TLS_RSA_WITH_NULL_SHA256, {0x00, 0x3B}

8.2 R-15: The default cipher suite for both mbaps client and server Devices SHOULD

be TLS_RSA_WITH_AES_128_CBC_SHA256, {0x00, 0x3C}

8.2 R-66: Client devices with bulk transport encryption and NULL bulk encryption
SHOULD always place NULL bulk transport cipher suites last in cipher suite priority

8.3 R-16: A mbaps Server Device SHOULD provide the role-based client AuthZ as
described in this section.

http://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml

Modbus.org
MB-TCP-Security-v21_2018-07-24

 25

8.3 R-17: If a mbaps Server Device provides role-based client AuthZ, it MUST comply

with the requirements identified in this section.

8.3 R-18: To provide mbaps role-based client authorization capability the following
elements are REQUIRED:

x.509v3 client domain certificate ‘Role’ extension,
mbaps server AuthZ algorithm,
mbaps server Roles-to-Rights Rules Database.

8.3 R-19: The mbaps client device MUST be provisioned with its x.509v3 domain

certificate.

8.3 R-20: The x.509v3 client domain certificate MUST include the Role extension.

8.3 R-21: The Role in the X.509v3 certificate MUST use the Modbus.org PEM OID
1.3.6.1.4.1.50316.802.1

8.3 R-22: The Role in the x.509v3 certificate MUST use ASN1:UTF8String encoding

8.3 R-65: There MUST only be one role defined per certificate. The entire string will be
treated as one role.

8.3 R-23: If no Role is specified in the X.509v3 certificate, the mbaps server MUST provide a
NULL role to the AuthZ algorithm.

8.3 R-24: The mbaps AuthZ Algorithm MUST be defined and provided by the device
vendor.

8.3 R-25: The Roles-to-Rights Rules Database design, both syntax and semantics,
MUST be defined by the device vendor.

8.3 R-26: The Roles-to-Rights Rules Database for a particular application MUST be
configured according to the device vendor’s design, and provisioned in the mbaps
Server by the end user.

8.3 R-27: The Roles-to-Rights Rules Database for a particular application MUST be
configurable by the end user.

8.3 R-28: The Roles-to-Rights Rules Database for a particular application MUST NOT
have hardcoded default roles that are unchangeable.

8.3 R-29: The Role values used in the x.509v3 client domain certificates MUST be
consistent with the device vendor’s design of the Roles-to-Rights Rules Database.

8.3 R-30: The mbaps server MUST extract the client Role from the received x.509v3
client domain certificate.

8.3 R-31: If the MBAP protocol handler for authorization rejects a request it MUST
use the exception code 01 – Illegal function code.

10.1 R-32: mbaps devices MUST provide TLS v1.2 or better.

10.1 R-33: mbaps Devices MUST conform to the requirements of [RFC5246].

10.1 R-34: mbaps devices MUST NOT negotiate down to TLS v1.1, TLS v1.0, or SSL
V3.0.

Modbus.org
MB-TCP-Security-v21_2018-07-24

 26

10.1 R-35: mbaps devices MUST NOT negotiate the use SSL v2.0 and SSL v1.0 in

conformance with [RFC6176].

10.2 R-36: mbaps Devices SHOULD provide a counter mode cipher suite.

Counter mode cipher suites include
 TLS_RSA_WITH_AES_128_GCM_SHA256, {0x00, 0x9C}
 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, {0xC0, 0x2B}

10.2 R-37: mbaps Devices MUST NOT negotiate the cipher suite,
TLS_NULL_WITH_NULL_NULL.

10.2 R-38: Any cipher suite used by mbaps Devices and negotiated in a TLS Handshake
Protocol exchange MUST be listed at IANA’s TLS Cipher Suite Registry in the
[TLS-PARAMS].

10.2.1 R-39: mbaps Devices MUST provide TLS Client-Server key exchange based-on
RSA technology as specified by the mandatory cipher suite and described in [RFC
5246].

10.2.1 R-40 mbaps Devices SHOULD provide TLS Client-Server key exchange based on
ECC technology.

10.2.1 R-61 mbaps Devices using ECC technology MUST support at least P-256 NIST
curve.

10.2.1 R-62 mbaps Devices using ECC technology MUST support at least the minimum
cipher suite of TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

10.2.1 R-63 mbaps Devices using ECC technology MUST specify the curves used in their
Client Hello using the Supported Elliptic Curves extension in [RFC4492]

10.2.1 R-64 mbaps Devices using ECC technology MUST specify the point format used in
their Client Hello using the Supported Point Format extension in [RFC4492]

10.2.2 R-41: mbaps Devices MUST support the TLS Client-Server Mutual Authentication
Handshake.

10.2.2 R-42: mbaps Device SHOULD support the TLS Resumed Session Handshake on
Client and Server.

10.2.2 R-43: mbaps Device MAY support the TLS Session Ticket resumption on Client
and Server

10.2.2 R-44: mbaps Servers MUST reject a TLS Handshake where the Client has not
responded to a Client Certificate request with certificate.

10.2.2 R-45: mbaps Devices SHOULD provide x.509v3 Certificates signed by a Certificate
Authority.

10.2.2 R-46: mbaps Devices MUST send the entire certificate chain down to the root CA
when sending their certificate

10.2.2 R-47: x.509v3 Certificates provided by mbaps Devices MUST conform to the
requirements of [RFC5280].

10.2.3 R-48: If an mbaps Device is to be used in a scenario where encryption is required,
then a cipher suite with the required encryption indicator MUST be chosen from the
list at IANA’s TLS Cipher Suite Registry in the [TLS-PARAMS].

Modbus.org
MB-TCP-Security-v21_2018-07-24

 27

10.2.3 R-49: If an mbaps Device is to be used in a scenario where encryption is not

required, then a cipher suite with a NULL bulk encryption indicator MUST be
chosen from the list at IANA’s TLS Cipher Suite Registry in the [TLS-PARAMS].

10.2.4 R-50: mbaps Devices MUST NOT use the HMAC-MD5 hash algorithm.

10.2.4 R-51: mbaps Devices MUST NOT use the HMAC-SHA-1 hash algorithm.

10.2.4 R-52: mbaps Devices MUST provide the HMAC-SHA-256 hash algorithm.

10.2.4 R-53: mbaps Device MUST NOT use a NULL HMAC hash algorithm

10.2.5 R-54: mbaps Devices MUST NOT provide the HMAC-SHA-1 hash algorithm for use
in the PRF function to calculate the key block as defined in [RFC5246] sections 5,
6.3 and 8.1.

10.2.5 R-55: mbaps Devices MUST provide the HMAC-SHA-256 hash algorithm for use in
the PRF function to calculate the key block as defined in [RFC5246] sections 5, 6.3
and 8.1.

10.2.6 R-56: As early as possible in their development cycle, mbaps devices MUST
determine that they comply with the import/export conformance policies of their
respective countries for the cryptography they provide.

10.3 R-57: mbaps devices MUST provide the Maximum Fragment Length Negotiation
Extension as defined in [RFC6066].

10.3 R-58: mbaps devices MUST provide the ability to negotiate a Maximum Fragment
Length of 29 (512) bytes as defined in [RFC6066].

10.4 R-59: mbaps devices MUST set the TLS CompressionMethod field of the
ClientHello message to the value of NULL.

10.5 R-60: mbaps devices MUST provide the TLS Renegotiation Indication Extension
defined in [RFC5746] to provide the secure renegotiation of TLS sessions.

 609

	1 Conformance Levels
	2 Normative Statements
	3 References
	4 Glossary of Acronyms & Abbreviations
	5 Introduction
	6 Protocol Overview
	6.1 Transport Layer Security Introduction

	7 Service Definition
	8 Protocol Specification
	8.1 TLS Handshake
	8.2 Cipher suite selection
	8.3 mbaps Role-Based Client Authorization

	9 System Dependencies
	10 TLS Requirements
	10.1 TLS Version
	10.2 TLS v1.2 Cryptography
	10.2.1 TLS Key Exchange
	10.2.2 TLS Authentication
	10.2.3 TLS Encryption
	10.2.4 TLS MAC
	10.2.5 TLS PRF
	10.2.6 TLS Cryptography Import/Export Policy

	10.3 TLS Fragmentation
	10.4 TLS Compression
	10.5 TLS Session Renegotiation

	11 APPENDIX A: mbaps Packet Structure
	12 APPENDIX B: Requirements listing

