The ubiquitous Modbus protocol, whose ownership was recently transferred from Schneider Automation to an independent nonprofit organization, Modbus-IDA, has been accepted by the IEC as a Publicly Available Specification (PAS).

The TCP variant of the protocol, along with a companion protocol known as RTPS, were submitted to IEC SC65C as a real-time industrial Ethernet suite. The submission was made possible by the recent granting of a type D liaison status to Modbus-IDA by the IEC. Of 25 countries voting on the proposal, there was only one negative vote, reflecting overwhelming approval of the specification. At the same time, the specification was accepted as a New Work Item by the subcommittee.

According to Crater, “We are delighted to be the first PAS to be approved during this submittal period. Although our organization is quite new, this approval reflects the outstanding acceptance that Modbus has received in the industrial marketplace over the past 25 years. More significantly, however, this Publicly Available Specification represents our organization’s dedication to bringing a new level of openness to industrial communications.”

In approving the document, several national committees asked for a reformatting of the specification to allow for better integration into the revision of IEC-61158 (Ed 4.0 2007), the well-known fieldbus standard. According to Crater, Modbus-IDA intends to make this reformatting a priority for the organization.

Jean-Jacques Poubeau, VP of Major Programs at Schneider Electric and a Modbus-IDA board member, also commented: “Modbus, the only industrial messaging protocol already recognized by the Internet world (port 502) has one of the largest installed bases worldwide with more than 7.2 million installed nodes. With this positive vote, the Modbus TCP-IP profile has been accepted by the IEC as a Publicly Available Specification and is now eligible to become part of future editions of the International Standards IEC 61158 and IEC 61784-2. This is a significant step forward for the efficient, proven and cost effective Industrial Ethernet solution supported by Schneider Electric.”
All the World’s Standards Groups Agree

Well, it may not be as momentous as that, but five of the world’s Ethernet-related standards groups, including Modbus-IDA, signed a Memorandum Of Understanding with IAONA at the 2004 Hanover Fair. The MOU provides the basis for the organizations to work together under the IAONA framework toward common solutions to some of the remaining issues in the design and management of industrial Ethernet networks.

Key to the MOU is the fact that there are still a number of “white spaces” – that is, areas in which the various standards groups have not yet developed divergent technologies – and it is in these white spaces that the organizations have agreed to work toward agreement to avoid further divergence of practice. Some of the areas anticipated by the MOU include system issues such as name space management, security issues, cabling and the use of IEEE 1588.

Organizations signing the MOU, in addition to Modbus-IDA and IAONA, include Interest Group SERCOS Interface (IGS), Open DeviceNet Vendors Association (ODVA), Ethernet Powerlink Specification Group (EPSG) and Ether-CAT Technology Group (ETG). The agreement provides each organization with a seat on the IAONA Technical Steering Committee, and the ability to participate in all IAONA Joint Technical Working Groups.

RFC Process Approved by Modbus-IDA Board

In a move bringing the same standard of openness enjoyed by the public Internet to the world of industrial standards, the Modbus-IDA board recently approved an “RFC” (Request For Comments) process for the organization’s standards efforts.

The essence of the RFC process is to encourage broad-based contribution of new ideas into the standards-making process, followed by periods of open public comment and discussion. Rather than the closed-door process perceived by many to dominate in our industry, this means that any change or extension to Modbus standards will take place in full public view with opportunities for all points of view to be heard.

The Modbus-IDA RFC is implemented on the organization’s website, where new initiatives may be submitted for discussion. Also available on the website is a flowchart document illustrating the path taken by RFC submissions.

Guiding the RFC process will be a series of technical committees now being formed by the organization (see related story at right). These committees will work with RFC authors to coordinate submissions of similar intent, improve clarity of submissions, assist in the integration of comments and make recommendations for final RFC approvals.

The technical committees will also be able to initiate RFCs, to insure that significant areas of technology are not neglected in the Modbus-IDA evolutionary process.

For more information on the RFC process, refer to www.modbus-ida.org and follow the link to “Modbus Community - Developers Corner.”

The initial framework is now in place, to be more fully populated as the technical committees commence their work.
Modbus-IDA Forming New Technical Committees This Year

Modbus-IDA is proud to announce the initiation of its technical evolution work, with the formation of five new technical committees and a marketing committee. This evolution will primarily take place through the Request For Comments process (see article at left). These groups, composed of Modbus-IDA members and invited guests, will be primarily responsible for developing and/or guiding extensions, modifications and supplements to the Modbus specification as they progress through the RFC process.

Most of the work will be accomplished via email, and most meetings held via conference call, making it easy for busy people to participate.

1. IT Infrastructure. This group will work on system-level issues, such as security, adoption or adaptation of additional IP protocols, application services, and network installation, performance and management. There will also be a liaison function with relevant IAONA Working Groups.

2. Conformance Test Policy. Already an active group, its purpose is to further define and develop our conformance testing program and guide the efforts of our conformance test lab(s). This includes the definition of conformance classes and test criteria.

3. Device Description. The focus of this group is to work on the structure and mechanisms to associate semantics with devices. This work may evolve to include many of the former IDA Group issues, including object definitions and distributed automation.

4. Safety Layer. This group is concerned with the definition of a safety layer and related conventions.

5. Real-Time. This group will work on one or more real-time solutions to meet the requirements of certain application categories. The effort may include the coexistence of Modbus TCP with conventional IP traffic. Again, some of this effort (notably IEEE 1588 implementation and Ethernet frame prioritization) will involve a liaison function with IAONA.

6. Marketing. Not a technical group, this committee is engaged in the study of Modbus-IDA marketing activities on behalf of its members’ interests. Discussion to date has focused on trade show activity, but other initiatives such as regional workshops, publications and etc. will also be discussed.

Any member interested in participating in any of these committees is encouraged to contact Ken Crater at ken@modbus-ida.org to get more information or to sign up!

Q&A

On May 18, a user wrote: “In our SCADA system the master transmits a request message and then listens for a proper reply message from a slave for a timeout period of 1 second. "With a store and forward implementation on a common radio frequency, the master, after transmitting a request message to the store & forward slave, will ‘hear’ the store & forward station request message and reply before it (the master) receives a proper reply message from the store & forward station. “The Modbus RTU driver I am using expects to receive a proper reply message immediately after it transmits a request message. If it hears anything other than a good reply it sets a timeout error code even though a good reply is eventually received within the timeout window.

“With a store and forward implementation on a common radio frequency, the master, after transmitting a request message to the store & forward slave, will ‘hear’ the store & forward station request message and reply before it (the master) receives a proper reply message from the store & forward station. “The Modbus RTU driver I am using expects to receive a proper reply message immediately after it transmits a request message. If it hears anything other than a good reply it sets a timeout error code even though a good reply is eventually received within the timeout window.

“I am told that this is not part of the Modbus RTU protocol standard. Can anyone with more expertise with Modbus RTU protocol confirm this?”

Max Power replied: “The minimum time to begin a response is 3.5ct, but there is no maximum. It could be 1 minute, 10 minutes, etc.”

Meir Saggie added: “A store & forward mechanism is not part of Modbus specs. (in particular, one that is heard by the Master).

“In Modbus, the Master expects precisely one reply to its query – good or bad. In the latter case, the transaction simply failed. It is up to the “user” of Modbus to retry or not. (exception – a Broadcast query does not expect any reply.)

“In other words, the Master in your case does not have the slightest idea of where the ‘reply’ came from (the store & forward machine in your case) – it simply assumes it is from the slave and processes it as such.

“As a practical solution, you may want to insert a delay, so your Master is ‘deaf’ for the amount of time the store & forward machine ‘talks’.”

Ask your question or help out another user on the Modbus Community Forums: modbus.control.com for users or modbus.control.com/dev for developers.
Modbus-IDA at ISA/2004

We're looking forward to our next successful trade show appearance at ISA/2004, the enormously popular U.S. venue for the controls and instrumentation industries. As in our previous booths, we're putting our members and their products on prominent display, as the most compelling way of demonstrating the overwhelming popularity of Modbus in the industrial world.

Modbus-IDA at Hanover Fair 2004

Making its first public appearance as "Modbus-IDA," our organization set up shop for the week at the enormous and impressive Hanover Fair. Our efforts were met with great success, and we carried our organization's message to many new companies in the world automation market.

Five sponsoring members joined Modbus-IDA in our debut appearance. Our well-staffed booth featured the products and literature of sponsoring companies ACT'L, HMS, Jetter, Niobrara, and Schneider Electric, whose representatives were joined by Modbus-IDA President Ken Crater and Executive Director Lenore Tracey. Modbus expert Dr. Rudy Bellardi of Schneider Automation was also on hand to answer even the most difficult technical questions posed by visitors to our booth.

Two major events highlighted the week for our organization. First was the announcement of the transfer of the Modbus copyright from Schneider Automation to Modbus-IDA, a milestone of monumental importance to the move toward open protocols.

For the sponsoring companies, the major event was the flow of current, new and potential customers into our booth and the forming of relationships that will spell continued success for years to come. We were happy to make new friends with our booth companions, and also happy to hear that most of our booth partners will join us in Houston for ISA/2004.

For Modbus-IDA, one of the greatest values in our Fair appearance was the opportunity to have in-depth discussions with our member companies. We come back from the Fair with new ideas, new energy, and enthusiastic commitments from numerous members to participate in our technical and marketing groups. We look forward to working with you in the months and years ahead to keep Modbus-IDA the open and responsive organization it was designed to be, and to keep the Modbus protocol open and responsive to the changes in our world.

Join the Modbus-IDA Marketing Committee and help us help you! Participate by email! ken@modbus-ida.org
Modbus Products and Innovations

**Acromag I/O Module Gains Modbus Certification**

Acromag, Incorporated (www.acromag.com), a Michigan-based designer of analog and digital control products for the industrial I/O market, recently had its BusWorks 900EN Ethernet I/O Module certified. The product family consists of a variety of analog and discrete input/output modules for monitoring sensors and controlling devices. Each remote I/O module provides a 10/100 Modbus TCP/IP interface and up to 12 channels in an inch-wide unit. Major features include 10/100 auto-negotiation; configuration from a standard web browser; and up to 12 channels per stand-alone module. Analog inputs accept TC, mV, RTD, VDC, and mA signals; analog outputs provide VDC or mA signals. Discrete I/O has 0-35V DC range. An advanced/ruggedized 5-port Ethernet switch accessory is also available in a compact 1-inch Din Rail package. BusWorks 900EN Ethernet I/O Modules have CE approval, UL, cUL, and CL1 Div 2 Groups ABCD approvals are pending. The product comes with a five-year standard warranty.

**New Modbus Gateway from ProSoft Technology**

ProSoft Technology has announced its new ProLinx Modbus to Modbus TCP/IP Gateways, the 4201-MNET-MCM and 5201-MNET-MCM. The gateways provide interface communication for Modbus-compatible devices to Modbus TCP/IP. The Ethernet communication port provides a high-speed client and server connection. Data is exchanged between the protocol drivers over an internal data file. The Modbus TCP/IP client driver supports the active reading and writing of data with Modbus TCP/IP compatible devices. The devices support standard TCP/IP support using TCP & UDP protocols and require no proprietary cabling or network hardware. Modbus function support includes function codes 1, 2, 3, 4, 5, 6, 15 and 16.

When used in intelligent devices that have their own micro-controller, the AnyBus-IC is connected to the device’s processor using a serial 2-wire TTL interface. The AnyBus-IC is responsible for the entire protocol handling so that the microprocessor in the field device is not tasked unnecessarily with bus handling.

For use with simple processor-less devices such as valve terminals and modular I/Os, the AnyBus-IC has a clocked shift register interface, which can be directly connected to up to 128 input signals and 128 output signals. The AnyBus-IC automatically detects how much I/O data is connected to the shift register during the Power On phase. This makes it easy to implement variable I/O configurations such as those typically used in modular I/O devices.

In addition to the Modbus-TCP application protocol, the AnyBus IC also has a wide range of embedded Internet functions: embedded web server with access to dynamic device data and the possibility to embed Java applets and scripts; on chip file system with 1.4-Mb user memory for data and programs; Telnet access, FTP file transfer and functions for sending e-mails.

The AnyBus-IC for Ethernet is an addition to the AnyBus-IC device family.

**HMS Industrial Networks Introduces Modbus-TCP on Chip**

A new single chip-controller for Modbus-TCP and embedded Internet is available. HMS’ AnyBus-IC combines a powerful 32-bit microcontroller with flash and RAM memory, a 10/100 Mb Ethernet controller and all the analogue functions of an industrial-grade fast Ethernet interface on a footprint of only 9 cm². The small size and reduced interface costs now make it possible to implement an Ethernet interface for simple field devices.

The chip is packaged in a 32-pin dual-in-line case and requires only a 5 Volt/250mA power supply. The Ethernet interface provides 100 Mbps full duplex data transmission, and the integrated 32-bit microprocessor guarantees short protocol processing times.

When used in intelligent devices that have their own micro-controller, the AnyBus-IC is connected to the device’s processor using a serial 2-wire TTL interface. The AnyBus-IC is responsible for the entire protocol handling so that the microprocessor in the field device is not tasked unnecessarily with bus handling.

For use with simple processor-less devices such as valve terminals and modular I/Os, the AnyBus-IC has a clocked shift register interface, which can be directly connected to up to 128 input signals and 128 output signals. The AnyBus-IC automatically detects how much I/O data is connected to the shift register during the Power On phase. This makes it easy to implement variable I/O configurations such as those typically used in modular I/O devices.

In addition to the Modbus-TCP application protocol, the AnyBus IC also has a wide range of embedded Internet functions: embedded web server with access to dynamic device data and the possibility to embed Java applets and scripts; on chip file system with 1.4-Mb user memory for data and programs; Telnet access, FTP file transfer and functions for sending e-mails.

The AnyBus-IC for Ethernet is an addition to the AnyBus-IC device family.

**Check out...**

...the listings of Modbus compatible products at www.modbus-ida.org
Modbus-IDA Elects Two New Board Members

At its June 2004 Annual Meeting, Modbus-IDA elected two new members to its Board of Directors. Fred Cohn, director of marketing, Schneider Electric, and Jean-Jacques Poubeau, vice-president, major systems programs customer & markets division, Schneider Electric, joined the Board.

Since 2001, Fred Cohn has been responsible for strategic marketing at Schneider, where he developed a three-year roadmap for the automation business unit. He has since taken over operational product marketing including product direction, product management, and product support functions. In 2004, Fred was named head of the Ethernet systems business team responsible for product management, project management, and product direction for Ethernet products in Schneider Electric.

Jean-Jacques Poubeau joined Telemecanique in 1981. Today, he is vice-president, major systems programs within the customer & markets division of Schneider Electric, developing the strategy, offer creation and deployment of major programs that deliver the systems required to meet complex customer needs.

We are delighted to have Fred and Jean-Jacques contributing their talents and leadership abilities to Modbus-IDA, and look forward to an exciting and productive year ahead!

Meet Some of Our Newest Members...

Comtrol Corporation is a leader in device connectivity for industrial applications. Founded in 1982, the company pioneered device integration with HOSTESS®, its multi-port serial controller card for PCs. Comtrol now provides serial device control technology with its DeviceMaster® device servers that provide Ethernet-attached serial ports. DeviceMaster is programmable so that it can run applications that enable it to eliminate the need for standard PCs on the factory floor. Comtrol’s technology is involved in postal automation systems, baggage handling systems, power utility automation, automotive assembly facilities, as well as other machine control and data acquisition applications.

Natick, Mass.-based Precision Digital Corporation has been in business for 30 years. The company’s product line consists of a wide variety of digital display devices; many with Modbus interface capabilities. These products include digital panel meters, PID temperature controllers and multi-input controllers. Standard process (4-20 mA) and temperature (T/C & RTD) inputs are available, as well as relay and 4-20 mA output options.

RTI (Real-Time Innovations) provides software tools, middleware, and professional services for distributed real-time systems and embedded applications. For over 10 years, with more than 10,000 seats in use, the ScopeTools product line has been helping embedded system developers produce higher quality, more reliable solutions. The company’s NDDS middleware and tools provide seamless communications and comprehensive tools for distributed, real-time system builders. Based in Sunnyvale, Calif., RTI’s customers span the embedded software industry from aerospace and defense, through networking and communications, to industrial automation and consumer electronics.

Join Modbus-IDA
see back cover for details...
The first device tested for Modbus serial protocol conformance at the University of Michigan Modbus Conformance Laboratory - the Carriere Digital 600 Circuit Breaker Trip Relay - passed with flying colors. In the past, LV power circuit breakers employed electromechanical trip relays with oil dashpots to sense an overcurrent and initiate the signal to trip the breaker. As these relays aged, the electromechanical components would wear and the oil dashpots leaked. At best, this could result in nuisance tripping of the circuit breaker; at worst there was the possibility of failure to trip at all.

Although the trip relay aged rather poorly, the mechanical component of the breaker often remained in reasonably good working order. With proper maintenance, the breaker could well outlive the trip relay. Furthermore, the switchgear that housed the breakers often showed few signs of aging, meaning that outdated and worn out trip relays could be the root cause of the need to replace very expensive switchgear.

Today, modern digital electronics have worked their way into virtually everything. Downtime is expensive and facility managers today need real-time information on the health and status of their equipment. Equipment that communicates its status is seen as a necessity in today’s competitive environment.

To keep up with the need for faster, more intelligent relaying equipment, Carriere developed the Digital 600 Series Circuit Breaker Trip Relay. It features a state-of-the-art, microcontroller-based design with full function RMS sensing. Trip history is stored in non-volatile memory, and the device requires no auxiliary power or batteries. Communication at 9600 or 19,200 baud over industry standard Modbus RTU protocol with EIA RS-485 physical interface is standard. Supporting both two-wire and four-wire configurations, the Digital 600 can be used without a repeater in multi-drop network environments with up to 32 devices.

This communication capability facilitates:
• Remote monitoring of trip settings, trip history, time of trip;
• Voltage measurement (Ph-Ph, Ph-N), power factor, real power (kW), reactive power (kVAR), total power (kVA) and energy consumption (kWh, GWh)
• Remote Internet monitoring via an Ethernet TCP/IP backbone link

The decision to standardize on Modbus protocol was a natural choice: it enables Carriere relays to integrate seamlessly into third-party communication networks.

The decision to standardize on Modbus protocol was a natural choice: it enables Carriere relays to integrate seamlessly into third-party communication networks.
We’re with you. Modbus-IDA exists to help suppliers and users of Modbus protocols succeed. Our members range from suppliers of Modbus-compliant products, to system integrators, to end users and educational institutions and even individuals.

The common link? They all value the information and services provided by Modbus-IDA, and they all play a role in determining the future of the world’s most broadly applied protocol.

**Designing with Modbus**

Each day, Modbus developers turn to Modbus-IDA for valued assistance with their projects:

- Start with downloading specifications and other design documents from the modbus-ida.org website.
- To really save time, purchase the Modbus TCP Toolkit CD (hint: it’s FREE with membership), which contains source code and a myriad of other resources.
- Then, if you come across technical issues that have you stumped, post your question on our highly active developer’s forum. One of the many experienced Modbus implementers who frequent this forum will likely have your answer.

**Conformance Testing**

When your project’s done, what then? How do you know it really conforms to Modbus specifications? How do your users know?

The answer starts with running the conformance test suite included with your Modbus TCP Toolkit. This self-test helps you check your design assumptions and catch the subtle “gotchas” that might otherwise slip through your design review.

But to make the definitive statement of your company’s commitment to open protocols, submit your product for testing to the independent Modbus-IDA Conformance Test Lab. We’ll certify your product as compliant, and post that information on the Modbus-IDA website for the world to see.

**Visibility for You and Your Products**

And, speaking of the world seeing your products, your membership in Modbus-IDA opens the door to a powerful range of visibility options to highlight your company as a supplier of Modbus-based products.

Exposure on our website, in our newsletter, and through our various trade show appearances are all options that allow you to make the most of your Modbus-IDA membership.

If your company is truly on the cutting edge of new technology, you’ll likely also value the opportunity to participate in our technical committees. There, your company’s knowledge, experience and technology can help guide future enhancements, extensions and adaptations of Modbus to keep it the world’s leader for decades to come.

**Time to Apply**

When it comes time to get your Modbus network up and running, it’s comforting to know that hundreds of thousands of applications have preceded yours. But what if things don’t go as planned?

The modbus-ida.org users forum is ready to answer your questions and provide guidance. Thousands of users from diverse backgrounds read the forum, giving you a powerful base of experience from which to draw.

**The Future is Yours**

So, whatever your role in the use of Modbus, consider joining Modbus-IDA. You’ll get the support you need today, and have opportunities to help guide Modbus to a dynamic future.

---

**Now Available:**

**The Modbus TCP Toolkit CD**

The Modbus Toolkit provides all the necessary pieces to develop a Modbus-compliant device, including documentation, diagnostic tools, sample source code, and pre-test software to prepare for Modbus-IDA conformance certification. The toolkit is available as a benefit of membership in Modbus-IDA or can be purchased separately for US$500 plus shipping and handling.

**Toolkit Contents**

**Modbus Documentation**

- Modbus Application Protocol Specification, V 1.0
- Modbus Messaging on TCP Implementation Guide, Rev. 1.0

**Tools**

- Modbus/TCP Client Diagnostic Tool
- Modbus/TCP Server Diagnostic Tool

**Sample Source Code**

- Modbus/TCP Sample Client Code for Visual Basic Win32
- Modbus/TCP Sample Client Code for C/C++ Win32
- Modbus/TCP Sample Server Code for C/C++ Win32
- Modbus/TCP Sample Server Code for C VxWorks
- Modbus/TCP Sample Server Code for C++ VxWorks

**Conformance Testing**

- Modbus/TCP Conformance Test Software